As one of the groups most actively working on fluctuation electron microscopy (FEM), we continually improve the experimental and computational approaches associated with the technique. This line of research is usually undertaken in the course of working on some experimental problem with FEM, so it is not typically the sole focus of a Ph.D. student or post-doc. Please see the openings page for related projects in amorphous materials.
Publications
- “Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass” Jinwoo Hwang, Z. H. Melgarejo, Y. E. Kalay, I. Kalay, M. J. Kramer, D. S. Stone, and P. M. Voyles Phys. Rev. Lett. 108, 195505 (2012); commentary in Physics 5, 54 (2012).
- “Effect of Sample Thickness, Energy Filtering, and Probe Coherence on Fluctuation Electron Microscopy Experiments”, Feng Yi and P. M. Voyles, Ultramicroscopy 111, 1375 (2011).
- “Variable resolution fluctuation electron microscopy on Cu-Zr metallic glass using a wide range of coherent STEM probe size”, Jinwoo Hwang and P. M. Voyles, Microsc. Microanal. 17, 67 (2011).
- “Flexible formation of coherent probes on an aberration-corrected STEM with three condensers” Feng Yi, P. Tiemeijer and P. M. Voyles, J. Elec. Microsc. 59 (Supplement) S15-S21 (2010).
- “Size analysis of nanoscale order in amorphous materials by variable-resolution fluctuation electron microscopy” S. N. Bogle, L. N. Nittala, R. D. Twesten, P. M. Voyles, J. R. Abelson, Ultramicroscopy 1101273-1278 (2010).
- “Reverse Monte Carlo structural model for a zirconium-based metallic glass incorporating fluctuation microscopy medium-range order data“, Jinwoo Hwang, A. C. Clausen, Hongbo Cao, P. M. Voyles, J. Mat. Res. 24, 3121 (2009).
- “A phenomenological model of fluctuation electron microscopy for a nanocrystal / amorphous composite”, W. G. Stratton and P. M. Voyles, Ultramicroscopy 108, 727 (2008).
- “Quantifying nanoscale order in amorphous materials: simulating fluctuation electron microscopy of amorphous silicon”, S. N. Bogle, P. M. Voyles, S. V. Khare, and J. R. Abelson, J. Phys. Cond. Mat. 19, 455204 (2007).
- “Comparison of fluctuation electron microscopy theories and experimental methods” W. G. Stratton and P. M. Voyles, J. Phys. Cond. Mat. 19, 455203 (2007).
- “Evidence from atomistic simulations of fluctuation electron microscopy for preferred local orientations in amorphous silicon,”S. V. Khare, S. M. Nakhmanson, P. M. Voyles, P. Keblinski, and J. R. Abelson, Appl. Phys. Lett. 85, 745 (2004).
- “A quantitative measure of medium-range order in amorphous materials from transmission electron micrographs” R. K Dash, P. M. Voyles, J. M. Gibson, M. M. J. Treacy, P. Keblinski, J. Phys: Cond. Mat.15, S2425 (2003).
- “Fluctuation Microscopy in the STEM”P. M. Voyles and D. A. Muller, Ultramicroscopy 93, 147 (2002).
- “Experimental Procedures and Data Analysis for Fluctuation Microcopy” P. M. Voyles, M. M. J. Treacy, J. M. Gibson, H-C. Jin, and J. R. Abelson, in Advances in Materials Problem Solving with the Electron Microscope, J. Bentley et al., eds.; Mat. Res. Soc. Symp. Proc. 589, (2001), p. 155.
- “Fluctuation Microscopy: A Probe of Atomic Correlations in Disordered Materials” P. M. Voyles, J. M. Gibson, and M. M. J. Treacy, J. Electron Microscopy 49, 259 (2000).
- “Atom Pair Persistence in Disordered Materials from Fluctuation Microscopy” J. M. Gibson, M. M. J. Treacy, and P. M. Voyles, Ultramicroscopy 83, 169 (2000).
- “Schläfli Cluster Topological Analysis of Medium Range Order in Paracrystalline Amorphous Semiconductor Models” M. M. J. Treacy, P. M. Voyles, and J. M. Gibson, J. Non-Cryst. Sol. 266, 150 (2000).
- “An Improved Method for Detecting Subtle Spatial Structures by Fluctuation Microscopy” Toshiya Iwai, P. M. Voyles, J. M. Gibson, and Yoshitsugu Oono, Phys. Rev. B 60, 191 (1999).